Resit Exam — Functional Analysis (WBMA033-05)

Wednesday 26 June 2024, 8.30h-10.30h

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (10 points)

The linear space $\mathcal{C}([0,1],\mathbb{K})$ can be equipped with the following norms:

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$$
 and $||f||_{*} = \sup_{x \in [0,1]} \frac{1}{1+x^{2}} |f(x)|$.

Are these norms equivalent? Motivate your answer.

Problem 2 (5 + 5 + (5 + 10) = 25 points)

Consider the following Banach space over \mathbb{C} :

$$X = \left\{ f : \mathbb{R} \to \mathbb{C} : \sup_{x \in \mathbb{R}} |f(x)| < \infty \right\}, \quad \|f\| = \sup_{x \in \mathbb{R}} |f(x)|.$$

Consider the following linear operator:

$$T: X \to X, \quad Tf(x) = \frac{f(x+1) + f(x-1)}{2}$$

- (a) Show that T is bounded.
- (b) Show that the function $f_a(x) = e^{iax}$, with $a \in \mathbb{R}$, is an eigenvector of T and that the corresponding eigenvalue is a real number.
- (c) Show in two different ways that T is not compact:
 - (i) By using properties of $\sigma(T)$.
 - (ii) By considering the sequence (Tf_n) for a suitably chosen sequence (f_n) in X.

Problem 3 (10 + 5 = 15 points)

Let X be a Hilbert space over \mathbb{C} and assume that $u \in X$ satisfies ||u|| = 1.

- (a) Show that $Px = \langle x, u \rangle u$ is an orthogonal projection.
- (b) Show that the operator T = I 2P satisfies ||Tx|| = ||x|| for all $x \in X$.

Turn page for problems 4 and 5!

Problem 4 (5 + 10 = 15 points)

- (a) Formulate the Closed Graph Theorem.
- (b) Let X and Y be Banach spaces, and let $T: X \to Y$ be a linear operator. Prove that the following statements are equivalent:
 - (i) T is bounded;
 - (ii) for any sequence (x_n) in X such that $x_n \to 0$ and $Tx_n \to y$ we have y = 0.

Problem 5 (5 + 10 + 10 = 25 points)

- (a) Formulate the Hahn-Banach Theorem for normed linear spaces.
- (b) Equip the space $\mathcal{C}([0,1],\mathbb{K})$ with the sup-norm and consider the following linear maps:

$$f: \mathcal{C}([0,1], \mathbb{K}) \to \mathbb{K}, \qquad f(\varphi) = \int_0^1 \varphi(t) \, dt,$$

$$g: \mathfrak{C}([0,1],\mathbb{K}) \to \mathbb{K}, \qquad g(\varphi) = \varphi(\tfrac{1}{2}).$$

Show that ||f|| = 1 and ||g|| = 1.

(c) For the functions $\varphi(t)=1-t$ and $\psi(t)=t$ let $V=\operatorname{span}\{\varphi,\psi\}$ and consider the linear map

$$h: V \to \mathbb{K}, \qquad h(a\varphi + b\psi) = \frac{a+b}{2}.$$

What can we say about uniqueness when we apply the Hahn-Banach Theorem to h?

Solution of problem 1 (10 points)

The the two norms are equivalent if there exist constants $0 < m \le M$ such that

$$m||f||_{\infty} \le ||f||_* \le M||f||_{\infty}$$
 for all $f \in \mathbb{C}([0,1],\mathbb{K})$.

(4 points)

Take an arbitrary $f \in \mathbb{C}([0,1],\mathbb{K})$. For all $x \in [0,1]$ we have

$$\frac{1}{2}|f(x)| \le \frac{1}{1+x^2}|f(x)| \le |f(x)|.$$

(3 points)

Taking the supremum over all $x \in [0, 1]$ gives

$$\frac{1}{2} \|f\|_{\infty} \le \|f\|_{*} \le \|f\|_{\infty}.$$

Since $f \in \mathbb{C}([0,1],\mathbb{K})$ is arbitrary, it follows that the norms are equivalent and the constants are given by m = 1/2 and M = 1.

(3 points)

Solution of problem 2 (5 + 5 + (5 + 10) = 25 points)

(a) For any $x \in [0,1]$ we have

$$|Tf(x)| \le \frac{1}{2}(|f(x+1)| + |f(x-1)|)$$

$$\le \frac{1}{2}(||f||_{\infty} + ||f||_{\infty})$$

$$\le ||f||_{\infty}.$$

(3 points)

Taking the supremum over all $x \in [0, 1]$ gives

$$||Tf||_{\infty} = \sup_{x \in [0,1]} |Tf(x)| \le ||f||_{\infty},$$

which shows that the operator T is bounded.

(2 points)

(b) We have that

$$Tf_a(x) = \frac{f_a(x-1) + f_a(x+1)}{2}$$

$$= \frac{e^{ia(x-1)} + e^{ia(x+1)}}{2}$$

$$= \frac{e^{ia} + e^{-ia}}{2}e^{iax}$$

$$= \cos(a)f_a(x),$$

which shows that f_a is an eigenvector of T.

(4 points)

The associated eigenvalue $\lambda = \cos(a)$ is indeed a real number.

(1 point)

- (c) (i) Compact operators can have at most countably many eigenvalues. But from part (b) it follows that T has uncountably many eigenvalues (namely at least all values $\lambda \in [-1,1]$). Therefore, T cannot be compact. (5 points)
 - (ii) For each $n \in \mathbb{N}$ define the following function:

$$f_n(x) = \begin{cases} 1 & \text{if } x = n, \\ 0 & \text{otherwise.} \end{cases}$$

The sequence (f_n) belongs to X and is bounded as $||f_n|| = 1$ for all $n \in \mathbb{N}$. (4 points)

But if $n \neq m$ we have $||Tf_n - Tf_m|| = ||f_{n+1} - f_{m+1}|| = 1$. (3 points)

Therefore, the sequence (Tf_n) does not have a convergent subsequence. We conclude that T cannot be compact.

(3 points)

Solution of problem 3 (10 + 5 = 15 points)

(a) For any $x \in X$ we have

$$P^{2}x = \langle Px, u \rangle u$$

$$= \langle \langle x, u \rangle u, u \rangle u$$

$$= \langle x, u \rangle ||u||^{2}u$$

$$= \langle x, u \rangle u$$

$$= Px.$$

which implies $P^2 = P$ and thus that P is a projection.

(6 points)

To show that P is an *orthogonal* projection, we can proceed in two different ways.

Method 1. Note that $(\operatorname{ran} P)^{\perp} = (\operatorname{span} \{u\})^{\perp} = \ker P$, which implies by definition that P is an orthogonal projection.

(4 points)

Method 2. A projection on a Hilbert space is orthogonal if and only if it is selfadjoint. For all $x, y \in X$ we have

$$\langle Px, y \rangle = \langle \langle x, u \rangle u, y \rangle$$

$$= \langle x, u \rangle \langle u, y \rangle$$

$$= \langle x, u \rangle \overline{\langle y, u \rangle}$$

$$= \langle x, \langle y, u \rangle u \rangle$$

$$= \langle x, Py \rangle,$$

which shows that $P = P^*$.

(4 points)

(b) Method 1. Since P is an orthogonal projection we have

$$ran (I - P) = ker P = (ran P)^{\perp}.$$

Let $x \in X$ be arbitrary. Applying the Pythagorean theorem twice gives

$$||Tx||^2 = ||(I - P)x - Px||^2$$

$$= ||(I - P)x||^2 + ||Px||^2$$

$$= ||(I - P)x + Px||^2 = ||x||^2.$$

(5 points)

Method 2. For any $x \in X$ we have

$$||Tx||^{2} = \langle Tx, Tx \rangle$$

$$= \langle x - 2Px, x - 2Px \rangle$$

$$= \langle x - 2\langle x, u \rangle u, x - 2\langle x, u \rangle u \rangle$$

$$= \langle x, x \rangle - 2\langle x, u \rangle \langle u, x \rangle - 2\langle u, x \rangle \langle x, u \rangle + 4|\langle x, u \rangle|^{2} \langle u, u \rangle$$

$$= \langle x, x \rangle - 4|\langle x, u \rangle|^{2} + 4|\langle x, u \rangle|^{2} = ||x||^{2}.$$

(5 points)

Solution of problem 4 (5 + 10 = 15 points)

- (a) Let X and Y be Banach spaces, let $V \subset X$ be a closed linear subspace, and let $T: V \to Y$ be a linear map. If the graph of T is closed, then $T \in B(V, Y)$. (5 points)
- (b) Let X and Y be Banach spaces, and let $T: X \to Y$ be a linear operator. Prove that the following statements are equivalent:
 - (i) T is bounded;
 - (ii) for any sequence (x_n) in X such that $x_n \to 0$ and $Tx_n \to y$ we have y = 0.

Proof of $(i) \Rightarrow (ii)$. Assume that T is bounded. Let (x_n) be a sequence such that $x_n \to 0$ and $Tx_n \to y$. Then it follows that

$$||y|| = ||y - Tx_n + Tx_n|| \le ||y - Tx_n|| + ||Tx_n|| \le ||y - Tx_n|| + ||T|| ||x_n||.$$

Since the right-hand side tends to zero, it follows that y = 0.

(5 points)

Proof of (ii) \Rightarrow (i). Assume that $x_n \to x$ and $Tx_n \to y$. Introduce the new sequence $z_n = x_n - x$. Then it follows that $z_n \to 0$ and $Tz_n \to y - Tx$. By assumption it follows that y - Tx = 0 so that y = Tx.

(3 points)

We conclude that the graph of T is closed. Since X and Y are Banach spaces we can apply the Closed Graph Theorem with V = X to conclude that T is bounded. (2 points)

Solution of problem 5 (5 + 10 + 10 = 25 points)

- (a) Let X be a normed linear space and let $V \subset X$ be a linear subspace. If $f \in V'$, then there exists $F \in X'$ such that F(v) = f(v) for all $v \in V$ and ||F|| = ||f||. (5 points)
- (b) For $\varphi \in \mathcal{C}([0,1],\mathbb{K})$ we have that

$$|f(\varphi)| = \left| \int_0^1 \varphi(t) \, dt \right| \le \int_0^1 |\varphi(t)| \, dt \le \int_0^1 ||\varphi||_{\infty} \, dt = ||\varphi||_{\infty}.$$

(4 points)

For $\varphi(t) = 1$ we have $\|\varphi\|_{\infty} = 1$ and $|f(\varphi)| = 1$. Hence,

$$||f|| = \sup_{\varphi \neq 0} \frac{|f(\varphi)|}{||\varphi||_{\infty}} = 1.$$

(1 point)

For $\varphi \in \mathcal{C}([0,1],\mathbb{K})$ we have that

$$|g(\varphi)| = |\varphi(\frac{1}{2})| \le \sup_{x \in [0,1]} |\varphi(x)| = ||\varphi||_{\infty}.$$

(4 points)

For $\varphi(t) = 1$ we have $\|\varphi\|_{\infty} = 1$ and $|g(\varphi)| = 1$. Hence,

$$||g|| = \sup_{\varphi \neq 0} \frac{|g(\varphi)|}{||\varphi||_{\infty}} = 1.$$

(1 point)

(c) First observe that $f(\rho) = g(\rho) = h(\rho)$ for all $\rho \in V$. (2 points)

In particular, it then follows that

$$||h|| = \sup_{\rho \in V \setminus \{0\}} \frac{|h(\rho)|}{||\rho||_{\infty}} = \sup_{\rho \in V \setminus \{0\}} \frac{|f(\rho)|}{||\rho||_{\infty}} \le \sup_{\rho \in \mathcal{C}([0,1],\mathbb{K}) \setminus \{0\}} \frac{|f(\rho)|}{||\rho||_{\infty}} = ||f|| = 1.$$

For $\rho(t) = 1$ we have $\|\rho\|_{\infty} = 1$ and $|h(\rho)| = 1$, which implies that $\|h\| = 1$. (4 points)

We conclude that both f and g are norm preserving extensions of h. But note that $f \neq g$, since for $\rho(t) = t^2$ we have $f(\rho) = \frac{1}{3}$ whereas $g(\rho) = \frac{1}{4}$. Therefore, the norm preserving extension of h obtained by the Hahn-Banach Theorem is not unique. (4 points)